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Thermodynamics of Supercooled 
Liquids and their Glass 
Transition 
JOHN AGREN 
Division of Physical Metallurgy, Royal Institute of Technology. 
S- 10044 Stockholm. Sweden. 

(Receioed 15 February 1988) 

The thermodynamic properties of supercooled liquids are discussed and a phenomeno- 
logical model, capable of representing the most important experimental features, is 
presented. The most characteristic feature is the gradual decrease in entropy, by which the 
entropy of the liquid approaches that of a crystalline solid on cooling. This behaviour is 
modeled by means of defects, connected with the individual atoms, which are introduced 
to an “ideal” amorphous solid on heating. It is suggested that the increase in defect 
content yields not only an increase in enthalpy but also an extra increase in entropy. A 
tentative value AS = R ,  the gas constant, per mole of defects is suggested. 

The relation between glass-transition temperature and melting point is discussed under 
the assumption that the glass transition occurs at a certain critical defect content. 

Physical interpretations of the new model are discussed. The anomalous behaviour of 
liquid high-purity SiO, is discussed. Finally, liquid Sn and glycerol are analyzed in terms 
of the model. 

Key Words: Defects, entropy, Ehrenfest relations. 

1 INTRODUCTION 

As a liquid is cooled there is a continuous change in its properties. At 
first they depend only weakly on temperature, but if crystallisation can 
be avoided and large undercoolings are obtained the variation becomes 
very strong. The viscosity, for example, changes by several orders of 
magnitude within a comparatively narrow temperature range and a 
glass transition marks the end of this gradual change. At lower 
temperatures, i.e. in the glassy state, most properties have temperature 
dependencies similar to those of a crystalline solid. One will thus 
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I24 J. AGREN 

observe an almost discontinuous change in properties like the heat 
capacity and the thermal expansion at the glass transition. 

At low temperatures, but still above the glass transition, a substantial 
part of the variation in properties is due to structural changes in the 
liquid and requires rearrangements on the molecular or atomic level. 
The term structural relaxation is frequently applied and the rate of the 
changes is often represented by a relaxation time which is closely 
related to the atomic mobility. Many authors have suggested that the 
glass transition is simply a relaxation phenomenon where slow kinetics 
does not allow the structural relaxation to thermodynamic equilibrium 
within the experimental time scale. This accounts for the well known 
observation that an increasing cooling rate, i.e. a shortening of the time 
scale, displaces the glass transition to a higher temperature. 

The structural changes are manifested most clearly in the decrease of 
the entropy as the liquid is cooled. Kauzmann' pointed out that if the 
decrease would have continued below the glass transition, then the 
entropy would soon fall below the value of the stable crystalline phase, 
resulting in a negative value at absolute zero. That result would be 
impossible and it may thus be concluded that the decrease of entropy 

T E M PER ATU RE 
Figure 1 
stable crystalline solid. 

Schematic variation in entropy difference between supercooled liquid and 
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SUPERCOOLING AND GLASS TRANSITION 125 

must stop soon below the glass transition even if the cooling rate was 
sufficiently low to allow internal equilibrium to be established within 
the liquid at all temperatures. The equilibrium properties of the liquid 
would thus look something like the sketch in Figure 1, the idea being 
that a liquid which has passed through a glass transition and is now in a 
non-equilibrium glassy state, dashed line, would on long-time anneal- 
ing relax towards the equilibrium curve. 

The slope of this entropy curve is related to the difference in heat 
capacity and on exceedingly slow cooling one would thus expect a 
rather rapid decrease in the heat capacity difference at a temperature 
somewhat below the glass transition observed for a normal cooling 
rate. That decrease in heat capacity has been regarded as a manifesta- 
tion of a thermodynamic glass transition of the liquid. 

The purpose of the present report is to present a phenomenological 
model for representing the properties of supercooled metallic liquids, 
including their thermodynamic glass transition. However, a brief over- 
view of some important concepts will first be given in the next two 
sections. 

2 STRUCTURAL RELAXATION AND THE GLASS TRANSITION 

A general treatment of the properties of supercooled liquids can be 
tentatively based on the assumption that any liquid property Q depends 
on the pressure P ,  the temperature Tand some internal variable x that 
describes the configurational state of the liquid, i.e. 

Q = Q(p, T, x) (1) 

G = G(P, T, x) (2) 

(aGl~x>,,, = 0 (3) 

x = X,,(P, T )  (4) 
As expected, the equilibrium property will thus depend on P and Tonly. 

( 5 )  

In particular, for the Gibbs energy we have 

Applying the equilibrium condition for a given P and T, 

we obtain an expression for the equilibrium value of x, 

Qeq = Q(p ,  T, Xeq(P7 TI) = Qeq(P, TI 
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126 J. AGREN 

It thus follows that the variation in the property with P and Twill 
consist of two terms, i.e. 

and 

The second term in both equations depends on the structural relaxation 
because x, i.e. the configurational state, must change in order to 
maintain the equilibrium as P or Tis changed. When the experimental 
time scale becomes much shorter than the relaxation time this term 
“freezes in” and only the first term is observed below T,. It will thus 
seem as if the property changes almost discontinuously at T,. The 
change in heat capacity, for example, can be calculated by identifying Q 
with the enthalpy H and evaluating ACp at T, from the last term in Eq. 
(7). On the other hand, it is important to notice that there will be no 
change in properties which are related to the first derivatives of the 
Gibbs energy, i.e. entropy, enthalpy and volume. This is clearly seen by 
identifying Q with G and observing that above the glass transition the 
equilibrium condition (dC/dx),,, = 0 requires that the second term in 
Eqs (6) and (7) is always zero. The first order derivatives of the Gibbs 
energy, i.e. S ,  H and r/; thus vary continuously over the glass transition. 
This is a characteristic feature of a second-order transition and has lead 
numerous investigators to apply thermodynamics of second-order 
transitions to the glass transition. This will be discussed in more detail 
in the next section. 

3 INFLUENCE OF PRESSURE ON THE GLASS TRANSITION 

For a second-order phase transition the effect of pressure on the 
transition temperature T, is given by the so-called Ehrenfest relations, 
i.e. 

d T ,  AK - 
dP - Ai! 
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SUPERCOOLING AND GLASS TRANSITION 127 

where AK,  Aa and ACp are the differences in compressibility, thermal 
expansion and heat capacity above and below T,. Combining the two 
equations we obtain 

These relations are applicable, for example, to the onset of long-range 
magnetic ordering at the Curie temperature in a ferromagnetic mater- 
ial. The validity of the Ehrenfest relations in connection with the glass 
transition has been investigated for various materiais by several au- 
thors, see for example Davies and Jones’ and Goldstein3. 

Before we discuss the outcome of these investigations it should be 
emphasized again that the glass transition is a relaxation phenomenon 
and its pressure dependence should thus be related to the pressure 
dependence of the kinetic properties of the liquid. Let us assume that 
the pressure and temperature dependence of the relaxation time is 
known, i.e. the function T(P,  T )  is known. If the glass transition occurs 
when the relaxation time T reaches a critical value T~ we can calculate T,  
for a given pressure P by solving the equation 

T(P, T )  = T ,  ( 1  1 )  

The pressure dependence is thus obtained as 

If the relaxation time can be expressed as a function of one single 
internal variable x which has a well defined equilibrium value for each 
combination of P and T, i.e. 

x = x,,(P, T )  (13) 

then we may as well say that the glass transition occurs at a critical x 
value and rather than Eq. (1 1) we can write 

It can be shown that this result leads to the Ehrenfest relations provided 
that the Gibbs energy depends on only one internal variable. It should 
also be mentioned that Prigogine and Defay4 have shown that Eq. (10) 
must hold if all configurational changes can be characterized by a single 
internal variable. Their derivation does not make use of any assump- 
tion of a second order transition. 
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128 J. ACREN 

The experimental information3 shows that Eq. (9) is fairly well 
obeyed for many glass-forming liquids but by no means for all. On the 
other hand Eq. (8) usually predicts a much stronger pressure effect than 
observed. Of course, this furthermore implies that the Prigogine-Defay 
relation, i.e. Eq. (lo), is not obeyed. However, it should be emphasized 
that this information has been taken from non metallic glass-forming 
substances. So far there seems to be no information available for 
metallic glasses. 

For all the tested cases it is thus evident that the configurational 
changes, when pressure is applied, cannot be satisfactorily represented 
by a single internal variable. In this context it is appropriate to mention 
the work by Roe’ who presented quite a general mathematical treat- 
ment of multiple-variable configurational changes. Earlier Goldstein3 
and Gee6 had suggested that the experimental fact, that the relation 9 is 
usually obeyed but 8 is not, implies that the glasses formed at high 
pressures have approximately the same frozen in configurational en- 
thalpy and entropy as the low-pressure glasses but are denser. The 
enthalpy and the entropy of a glass would thus be independent of 
whether its glass transition occured under pressure or not. However, 
the experimental fact is that the density will be higher if pressure is 
applied during the glass transition. This immediately leads to two 
important conclusions. The first one is that the glass transition does not 
occur at a certain volume but may occur at a certain configurational 
entropy or enthalpy, i.e. the relaxation time may depend on entropy or 
enthalpy rather than the volume. The second one is that a glass cannot 
be characterized satisfactorily by one internal variable only, because it 
is possible to change the volume without changing the enthalpy and 
entropy at the same time. 

In the present paper we intend to model the Gibbs energy of a liquid 
as a function of temperature by means of one internal variable. In view 
of the above discussion it must be emphasized that such a model is not 
capable of representing the pressure dependence of Gibbs energy. In 
order to cover the pressure dependence we would need at least one 
more internal variable which would contribute to the volume to a larger 
degree than to the enthalpy and entropy. We will not discuss that 
matter further in the present report, but simply accept that the present 
approach is intended to model the behaviour of glasses at low pressures. 

4 THERMODYNAMIC MODEL 

It has been argued, see for example Refs. 7 and 8, that the structure of a 
liquid metal can be described in terms of defects being introduced into 
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SUPERCOOLING AND GLASS TRANSITION 129 

the glassy structure on heating. Under the assumptions that, a) a single 
kind of defect is considered, b) its enthalpy of formation AHd per mole 
i s  constant, c) each defect is connected to a particular atom and d) the 
defects are distributed at random, then the Gibbs energy would vary 
with the number of defects according to the following expression, where 
x is the fraction of atoms having a defect, 

AG = G - G" = XAHd + R T { x  In X + (1 - X )  h ( l  - x ) }  (15) 

Go is the Gibbs energy of a defect-free system. The equilibrium number 
of defects is found by looking for the minimum in G .  By solving 

dAGldx = 0 (16) 

we obtain the equilibrium fraction of atoms having a defect 
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Figure 2 Calculated variation in heat capacity due to defects. Dashed line is calculated 
assuming that there is no extra entropy connected with the defects. Solid line is calculated 
assuming an extra entropy of R per mole of defects. 
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130 3.  AGREN 

The contributions to the entropy and heat capacity due to the defects 
are obtained as 

AS = dAG/dT = - R { x  In x + (1 - x) In(1 - x)) ( 1  8) 
2 e - A H d / R T  

ACp = -Td2AG/dT2  = R (19) ( 1  + e - A H d ‘ R T ) 2  

These expressions or similar ones have been derived many times’.’. It 
must be emphasized that in this type of model the entropy contribution 
due to the defects only depends on their amount and that contribution 
would also exist in a non-equilibrium liquid, i.e. a glass where a certain 
x value is fixed by freezing. However, the contribution to the heat 
capacity from the defects comes entirely from the variation of x with 
temperature and for a glass with a constant x we would have AC, = 0. 

The dashed line in Figure 2, shows how Eq. (19) predicts C ,  to vary 
with temperature. It is evident that it rises too slowly to its maximum to 
be suitable for modeling the transformation from a glass to a liquid. 

The model can be modified by assuming that the formation of a 
defect is not only connected with an increase in enthalpy but also an 
extra increase in entropy. An attempt to model such an effect may be 
based upon the arbitrary assumption that a state, where each atom has 
a defect, would have an extra entropy R relative to the state free of 
defects. Formally this modification of the model can be accomplished as 
follows 

G - Go = x(AHd - R T )  + R T { x  In X + (1 - x)ln(l - X)} (20) 

AS = x R  - R { x  In x + (1 - x) ln(1 - x)) (22) 
2 , I  -AHd/RT 

“l’ = (1 + , l - A H d / R T  2 1 
We will now discuss some implications of the present model. Although 
the glass-transition temperature actually depends on the cooling rate 
we shall make the simplifying assumption that it occurs whenever a 
certain defect concentration is reached. If the relaxation time is a 
function of the defect concentration x only, we may equally well say 
that the glass transition occurs when the relaxation time reaches a 
critical value. 

Figure 3 shows how the changes in entropy and Gibbs energy, due to 
the postulated defects, vary with temperature. We shall now discuss the 
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1.601 

R T / A H ,  

Figure 3 Calculated variation with temperature of Gibbs energy, entropy due to the 
defects and the defect content x .  

implications of a model calculation based on the assumption that the 
glass transition occurs when 15% of the atoms have a defect. From Eq. 
(21)  we can then obtain the corresponding temperature, normalized to 
AH,,  as R T / A H ,  = 0.37. By accepting the popular rule of thumb that 
the glass transition scales with the melting point T, of a stable 
crystalline phase according to Tg z Tm/3 we then immediately have 
RT, z A H d ,  i.e. the melting point is located at RTIAH,  z 1 .  The 
entropy curve gives a value AS = 1.2R at that temperature and that 
would be the melting entropy if the crystalline and perfectly glassy 
states have the same entropy. That seems to be a reasonable value in 
comparison with Richard’s rule which gives a value of about R .  

At the assumed melting point of R V A H ,  = 1 we can read the value 
AG = -0 .7AHd.  We may thus conclude that a melting temperature 3 q  
will occur if the difference in enthalpy at the absolute zero between the 
perfectly glassy state and crystalline state is 0.7AHd.  The melting point 
will be higher than 3Tg if the enthalpy difference at absolute zero is 
larger. It will be lower than 3Tg if the enthalpy difference is lower. Of 
course, these conclusions hold only if there are no other factors 
contributing to the Gibbs energy difference and if the formation of one 
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132 J. AGREN 

mole of defects gives an extra entropy increase of R. Admittedly, the 
model defined by Eq. (20) has not yet been put on a clear physical basis. 
In the next section R in the term RTwill be related to the so-called 
communal entropy. 

5 COMPARISON BETWEEN GLASS TRANSITION IN METALS 
AND OTHER LIQUIDS AND THE PHYSICAL NATURE OF 
POSTULATED DEFECTS 

5.1 General Characteristics 

The increase of heat capacity with increased supercooling is a charac- 
teristic feature of liquid metals. In the present report it has been 
modeled by introducing a single kind of defect. An examination of other 
glass-forming liquids reveals that this is by no means a universal 
behaviour. On the contrary, i t  may even be an exception observed only 
for metals. An organic liquid like glycerol has a comparatively constant 
AC, below T, and at it decreases more or less discontinuously to a 
very low value'. The behaviour of polymers" and inorganic glasses like 
B,O," and silicate glasses12 seems similar, although very pure SO, 
glasses have a peculiar behaviour which will be discussed later. 

5.2 Physical Nature of Defects 

For many metals the difference in heat capacity between liquid and 
solid is small at the melting point, although the high melting transition 
metals seem to show a much more complex behaviour, see Hultgren's 
~ompilat ion '~.  Anyway, the heat capacity of the liquid metal at the 
melting point is always above 3R. A value slightly above 3R is expected 
classically if each atom has three vibrational degrees of freedom. We 
may thus conclude that the majority of the atoms in a metallic liquid 
are vibrating around their equilibrium positions. This corresponds to 
the so-called cage picture, proposed by Cohen and Turnbull14 and 
recently observed in molecular dynamics simulations ", where each 
atom is allowed to vibrate within a small cage formed by its nearest 
neighbors. So far we have not discussed the physical nature of the 
defects introduced in Section 4. In that section we suggested that the 
defects should be connected not only with an increase in enthalpy but 
also an extra increase in entropy which we chose rather arbitrarily 
equal to the gas constant R. The contribution to the heat capacity was 
derived from the configurational changes only, i.e. from the changing 
number of defects. At the melting point of a metal the change is small 
and the configurational contribution to the heat capacity will be small. 
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SUPERCOOLING AND GLASS TRANSITION 133 

This is manifested in the fact that the liquid and crystalline metals have 
roughly the same heat capacity in the temperature range around the 
melting point. By the same token glassy and crystalline metals have 
approximately the same heat capacity because the configurational 
changes of the glass are frozen in. 

It has been suggestedI6 that the entropy of fusion of metals is caused 
mainly by the transition from localized to non-localized atoms. When 
all atoms are in the completely non-localized state they share the free 
volume and there will be an extra entropy, the so-called communal 
entropy” which is exactly R, compared to when each atom is confined 
to move within its own cell. The communal entropy concept seems 
natural when treating dilute gases but its meaning is somewhat more 
difficult to visualize in a dense liquid, especially when we know that 
most of the atoms are vibrating in a metallic liquid. Anyhow, the 
concept has some merits and we can regard it as a justification for 
associating the entropy R with the postulated defects. W e  can then 
interpret the configurational changes on cooling as a gradual transition 
from non-localized to localized atoms. 

I t  is evident that a liquid with complex molecular constituents in 
addition to loss of communal entropy can exhibit a similar loss of other 
types of degrees of freedom. For example, Prigogine and Defay4 have 
suggested that the configurational changes of glycerol on cooling are 
caused by the gradual loss in rotational degrees of freedom. We can 
make a crude test of this hypothesis by introducing a second kind of 
defect in our model. According to GuggenheimI8 an additional rota- 
tional degree of freedom will contribute with 

to the Gibbs energy per mole of molecules, 0, is a characteristic 
temperature and s a symmetry number. The contribution to the heat 
capacity is (3 /2)R.  Assuming three rotational degrees of freedom per 
molecule we can model this by adding to Eq. (20) the following 
expression 

3y(AU, + AG,) + 3 R T { y  In y + (1 - y )  In(1 - y ) }  (25)  

where y is the fraction of glycerol molecules that can rotate, and AU, is 
the energy required at absolute zero in order to allow for the rotation. 
The two parameters AU, and s 0 j i 2  can now be adjusted in order to fit 
the experimental information on A C p  and AS,. It must be emphasized 
that this is not intended as a rigorous thermodynamic model for 
glycerol but only as a crude way of testing the suggestion by Prigogine 
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I I 

--- Experimental - Calculated 

I 
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I 
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I I 
O h  0.5 1 

T/ T, 
Figure 4 Variation with temperature of difference in heat capacity between liquid and 
solid glycerol. Solid line is calculated from present model. Dashed line is experimental 
data, Ref. 4. 

and Defay. The evaluation, which is discussed in the next section, shows 
that the model yields a reasonable result and a comparison between 
calculated and experimental ACp is given in Figure 4. 

5.3 Anomalous Behaviour of High-Purity SiOz 

High-purity liquid SiO, has a thermodynamic behaviour which is quite 
different from normal liquid silicate glasses and other glass-forming 
liquids. This is shown in Figure 5, depicting the difference in heat 
capacity ACp between the vitreous phase and cristobalite”. As can be 
seen there is a continuous increase in ACp with temperature. The glass 
transition can be varied within several hundred kelvins by varying the 
cooling rate. In practice the temperature where the viscosity is 1013 
poise is referred to as the glass point and for pure SiO, that value 
occurs at 1 19O0CZ0. 

The anomalous behaviour of ACp for SiO, is also revealed in the very 
low entropy of fusion for cristobalite, namely 0.5RI9. It is thus quite 
evident that SiO, on melting forms a liquid which has not as high 
entropy as one would normally expect. This is possible if the melting 
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135  SUPERCOOLING AND GLASS TRANSITION 

2 

T/  T, 
Figure 5 Variation with temperature of difference in heat capacity between liquid and 
solid SO, (cristobalite). From PankratzI9. 

occurs close to the thermodynamic glass transition. According to 
section 1 this will happen if the difference in enthalpy between the 
amorphous and crystalline phases is small at absolute zero. It is thus 
suggested that ACp of SiO, would increase strongly with temperature 
above the melting point and pass through a maximum at some 
temperature and then decrease or at least level out. The thermodynamic 
behaviour of SiO, would then be similar to that of other glass-forming 
liquids, e.g. glycerol, and the main difference would be that SiO, has a 
very low melting point compared to its glass transition. Unfortunately, 
we have not been able to find any information regarding the high- 
temperature behaviour of pure SiO,. 

6 APPLICATION OF THERMODYNAMIC MODEL TO 
EXPERIMENTAL DATA 

6.1 Pure Sn 

In order to test the ability of the model to represent thermodynamic 
data it will now be applied to a liquid metal, pure Sn. One reason for 
choosing Sn for the comparison is that the heat capacity for liquid Sn 
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136 J. AGREN 

has been measured for rather large undercoolings”. These data to- 
gether with data from Hultgren’s compilation’ were analyzed by 
means of the computer program for optimization of thermodynamic 
model parameters developed by Jansson” and the parameter AHd was 
evaluated. It was soon found that in order to fit the experimental data 
satisfactorily a more complicated temperature dependence than a 
constant entropy had to be introduced in the Gibbs energy for forming 
one mole of defects. By allowing for a general temperature dependence 
of the kind represented by the series expansion 

A G , = a - R T + c T l n T  + d T 2 . . .  (26)  

we obtain instead of Eq. (20) 

G - G” = xAG, + RT{x In x + (1 - x) ln(1 - x)} (27) 

This correction is not unexpected and without trying to give it a 
physical interpretation we can conclude that it makes the communal 
entropy less important. 

The ideal amorphous phase was approximated as having the same 
entropy and heat capacity as /I Sn, i.e. 

G& = G[, + A (29) 

where A is a constant which can be identified with the enthalpy of 
formation of the ideal glass from p at absolute zero. 

The result of the evaluation is shown in Figure 6. As a comparison a 
curve calculated from a recent assessment by Jonsson and Agren23 is 
included. The parameters needed to calculate the various thermody- 
namic quantities are given in the appendix. 

6.2 Glycerol 

In order to test if the behaviour of a more complex molecular liquid 
could be understood by introducing an additional type of defect 
glycerol was chosen. The extra type of defect, was associated with the 
occurrence of rotations of the molecules. Three rotational degrees of 
freedom per molecule were assumed and the following expression was 
used for the Gibbs energy per mole of molecules relative to an ideal 
amorphous solid. 

G - Go = x(AHd - R T )  + RT{x In x + (1 - x) ln(l - x)} 

+ 3y(a + 6 T -  (3/2)RT In T )  + 3RT{y In y 

+ (1 - Y ) W  - Y>l (30) 
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Figure 6 
different sources. 

Heat capacity, and entropy of liquid Sn, and entropy of solid Sn according to 

As previously, x is the fraction of molecules having the first kind of 
defect and y is the fraction of atoms having the second type. It should be 
mentioned that i t  has been assumed that all the three rotational degrees 
of freedom are equivalent. The equilibrium values of x and y are 
obtained by solving 

aAGlax = 0 (31) 

dAG/dy = 0 (32)  
A H d ,  a and b are adjustable parameters to be evaluated from the 
experimental data taken from Prigogine and Defay4 and from Owen24. 
The result is shown in Figure 4 and has already been discussed. The 
parameters are given in the appendix. 

7 SUMMARY 

It has been shown that the most characteristic thermodynamic features 
of supercooled liquids and their glass transition can be interpreted by 
means of a simple model. The gradual decrease in entropy on cooling, 
by which the entropy of the liquid approaches that of a crystalline solid, 
has been modeled by means of defects, connected with the individual 
atoms. The defects are introduced to an "ideal" amorphous solid on 
heating. 

It has further been suggested that the increase in defect content yields 
an extra increase in entropy. At first a tentative value AS = R, the gas 
constant, per mole of defects was suggested. It was then found that a 
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more general series expansion is needed in order to fit experimental 
information available for real substances. 

We have not discussed the properties of the hypothetical ideal 
amorphous phase, but simply assumed that it has an entropy and a heat 
capacity similar to that of a crystalline phase. It was further suggested 
that the anomalous behaviour of liquid high-purity SiO, is caused by 
the fact that the difference in enthalpy between crystalline and ideal 
amorphous phase at absolute zero relative to the enthalpy of formation 
of the defects is unusually small yielding an unusually low melting point 
compared to the glass transition. 

Physical interpretations of the new model have been discussed and 
one type of defect is connected with the so-called communal entropy for 
the case of simple metals. For more complex molecular liquids addi- 
tional types of defects have been suggested. 
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Appendix Optimized parameters (Jmo1-l ) 

Crystalline f i  Sn 

G[, - = -7241.9 + 98.808T - 21.592T In T- 0.0090471T2 

(from Ref. 22) 

Liquid Sn 

G,, - G i n  = xAG, + RT(x In x + (1 - x) ln(1 - x)} 

where 

G i n  - G[,  = 4225 

AGd = 5162 - RT- 1.4548T In T +  4.3434 10-3TZ 
+ 1.463097 10-6T3 

Liquid glycerol 

G - G " = x ( A H , - R T ) + R T { . x I n x + ( l  -x) ln( l  -x ) )  

+ 3y(a + hT- (3/2)RT In T) 
+ 3RT{y In y + (1 - y) ln(1 - y)} 

where 

AH, = 5025 
a = 3179 
h = 51.51 
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